Examen de Recuperación de Estructura de la Materia. Trimestre 15-I

Nombre:	Matrícula:
 Instrucciones: Sólo podrán abandonar el salón una vez que hayan entregado el es Si en alguna de las preguntas en la que se te pida justificar la respe Contesta directamente en estas hojas. 	
1 Cuando el cobre es bombardeado con electrones de alta ener	gía, se emiten rayos X. Calcula la energía (en joules)
asociada a los fotones si la longitud de onda de los rayos X es 0.154	4 nm. (1.0 puntos)
2 Calcula la energía y longitud de onda de la radiación asociada	con la siguiente transición electrónica en el átomo de
hidrógeno, de $n = 2$ a $n = 6$.	(1.0 puntos)
3 Escriba los cuatro números cuánticos para cada uno de los elect(a) Ge.	rones de valencia de los siguientes átomos:
(b) S.	(1.0 puntos)
4 Calcula la velocidad de un neutrón (masa = 1.67×10^{-27} kg) que ($1 \text{ Å} = 1 \times 10^{-10}$ m).	tiene una longitud de onda característica de 0.880 Å (1.0 puntos)
5 Se tienen las siguientes magnitudes de radios atómicos: 110 pr qué elementos (As, Ga, Ge, P y Si) corresponden estos valores. germanio?	
 6 Para cada una de las siguientes moléculas: (i) ClF₃; (ii) XeF₂ (a) Escriba la estructura de Lewis. (b) Indique la geometría molecular. (c) Indique la hibridación del átomo central. 	
(d) Indique si es polar o no polar.	(2.0 puntos)

8.- En la siguiente tabla se presentan las temperaturas de ebullición de las sustancias: PH₃, NH₃, SiH₄ y CH₄. Con base a esta información, ubíquelas y complete los espacios en blanco.

Sustancia				
Temperatura de	− 161.6 °C	− 111.4 °C	− 87.8 °C	− 33.3 °C
ebullición				
Fuerza				
intermolecular				

(1.0 puntos)

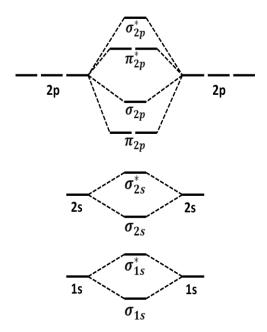
9.- A partir de la siguiente información: si se comparan dos compuestos, de masas moleculares similares, uno en el que sus moléculas pueden formar puentes de hidrógeno y otro donde solamente existen fuerzas de dispersión, indica si los siguientes enunciados son verdaderos (**V**) o falsos (**F**):

(a) El primero tendría una menor presión de vapor

().

(b) El primero tendría una mayor temperatura de ebullición

().


(c) El segundo tendría una mayor tensión superficial

().().

(d) El segundo sería un compuesto más volátil que el primero

(1.0 puntos)

10.- El diagrama de orbitales moleculares para una molécula hipotética A2, que tiene un total de 12 electrones, es:

- (a) Escribe la configuración electrónica para el anión A₂.
- (b) Calcula el orden de enlace para ésta especie.

(**1.0** puntos)

Constantes:

$$R_{\rm H} = 2.18 \times 10^{-18} \, \text{J},$$

$$h = 6.63 \times 10^{-34} \text{ J s},$$

$$c = 3 \times 10^8 \text{ m/s}$$